Aptitude Tests 4 Me

Basic Numeracy/Quantitative Aptitude

Detailed Solution

99. The correct answer is (b + 8)(b - 2)
Once again, look at your middle term. You want factors of -16 that add up to be positive 6. You see that 8 and -2 add up to 6, and write your answer as (b + 8)(b - 2). Distributing it out, you get b^2 + 8b - 2b - 16. Combine your "b" terms to get b^2 + 6b - 16

100. The correct answer is 4(b + 2)^2
Right from the start, you notice a common factor of 4 in each term. Factor it out to get 4(b^2 + 4b + 4) Factor the trinomial down further to (b + 2)(b + 2). Your final answer would be 4(b + 2)^2. The reason (4b + 8)(b + 2) or (2b + 4)^2 won't work is that they still have a number that can be factored out of them

101. The best answer is D.
There are three different arrangements of a boy and two girls:(boy, girl, girl), (girl, boy, girl), (girl, girl, boy). Each has a probability of (1/2)3. The total is 3*(1/2)3=3/8.

102. The best answer is D.
Treat the three that sit together as one person for the time being. Now, you have only 6 people (5 and the three that act as one) on 6 places: 6!=720. Now, you have to remember that the three that sit together can also change places among themselves:
3! = 6. So, The total number of possibilities is 6!*3!= 4320.

103. The best answer is C.
First, check Suzan: she has 4 seats left (7 minus the one in the middle and the two ends), After Suzan sits down, the rest still have 6 places for 6 people or 6! Options to sit. The total is Suzan and the rest: 4*6! = 2880.

104. The best answer is C.
The worst case is that we take out seven balls of each color and still do not have 8 of the same color. The next ball we take out will become the eighth ball of some color and our mission is accomplished. Since we have 4 different colors: 4*7(of each) +1=29 balls total. Of course you could take out 8 of the same color immediately, however we need to make sure it happens, and we need to consider the worst-case scenario.

105. The best answer is D.
The worst case would be to take out 21 white balls, 22 green and 22 blue balls and still not having 23 of the same color. Take one more ball out and you get 23 of either the green or the blue balls. Notice that you cannot get 23 white balls since there are only 21, however, you must consider them since they might be taken out also. The total is: 21+22+22+1= 66.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

Passage Reading Verbal Logic Non Verbal Logic Numerical Logic Data Interpretation Reasoning Analytical Ability Basic Numeracy About Us Contact Privacy Policy Major Tests FAQ