1. Passage Reading
2. Verbal Logic
3. Non Verbal Logic
4. Numerical Logic
5. Data Interpretation
6. Reasoning
7. Analytical Ability
8. Quantitative Aptitude
(a) The curve is skewed to the left
| |
(b) The curve has a disconuity between the mean and the median
| |
(c) The curve is flattened (kurtosis)
| |
(d) The curve is skewed to the right
|
194. In combinatorial analysis, the basic principle of counting provides a convenient way to calculate the number of possible outcomes for experiments. Let say you are given 3 caps, 4 shirts, 5 pants and 6 pairs of shoes. By using this principle, how many ways can you dress yourself?
(a) 3 + 4 + 5 + 6 = 18
| |
(b) 3 x 4 x 5 x 6 = 360
| |
(c) 3! + 4! + 5! + 6! = 870
| |
(d) 3! x 4! x 5! x 6! = 12441600
|
195. Let say there are 8 contestants in a contest. There are 8P3 = 336 possible combinations for the top three spots. Here, the letter "P" stands for permutation. Which of the following formula is equivalent to nPr?
(a) n x (n - 1) x ... x (n - r)
| |
(b) n x (n - 1) x ... x (n - r + 1)
| |
(c) n x (n - 1) x ... x 3 x 2 x 1
| |
(d) n x (n - 1) x ... x (n - r - 1)
|
196. You are given 10 balls and you are to choose 3 balls from these 10 balls. So, you have 10C3 = 120 ways to choose it. Here, the letter "C" represents "combination". Is it true that nCr = nC(n-r)?
(a) Yes
| |
(b) No
| |
(c)
| |
(d)
|
197. The binomial theorem provides a convenient way to calculate the value of the coefficients for all the terms in any expansion involving 2 unknowns. The values of these coefficients can also be obtained from which famous mathematical figures?
(a) Pentagram
| |
(b) Pascal's triangles
| |
(c) Pythagorean triplets
| |
(d) Permutation tree
|
TOTAL
Detailed Solution
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 |